³⁵Cl NQR and ¹H NMR Studies of Molecular Motions in Guanidinium Salt of Chloroacetic Acid*

Maria Zdanowska-Frączek, Małgorzata Grottel^a, and Ryszard Jakubas^b

Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland ^a Department of Physics, Academy of Agriculture, Poznań, Poland ^b Institute of Chemistry, University of Wrocław, Wrocław, Poland

Z. Naturforsch. 53 a, 484–487 (1998); received March 24, 1998

Multinuclear NQR and NMR techniques have been applied in order to study the molecular dynamics in $[C(NH_2)_3](ClH_2CCOO)$. The ³⁵Cl NQR frequency was measured over a wide range of temperature. The experimental results were described by using the theories of Bayer and Brown which take into account the torsional oscillations of the CClH₂-group of the anion.

A study of the proton NMR second moment as well as relaxation times T_1 and $T_{1\rho}$ performed in a wide temperature range revealed an onset of the guanidinium cation reorientation around its two-fold symmetry axis. Activation parameters for this motion were determined.

Key words: NMR; NQR; Molecular Motion.

Reprint requests to Dr. M. Grottel; Fax: (48-61) 848-74-95, E-mail: magrott@main.amu.edu.pl